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Abstract  

We obtain a hyperbolic equation whose discontinuity waves are all exceptional and 
propagate with velocity ,L When 2 -+ ~o or 2 = e, this equation becomes identical to the 
Schrtdinger equation and to the Klein--Gordon equation respectively. We also show 
that 2 is related to the dispersion relation E(p). 

1. Introduction 

It is well known that the Klein-Gordon equation is obtained from the 
relativistic Hamiltonian through the Schrtdinger representation. Indeed, 
the above equation is hyperbolic whereas the Schrt~dinger equation is 
parabolic so that it is impossible for the latter equation to transform 
continuously into the former. A similar problem arises in generalizing to 
the relativistic case the equation of heat propagation (Boillat, 1970; BoiIlat 
& Ruggeri, 1971). Bearing in mind the solution of  this latter problem, we 
build up a hyperbolic equation by adding to the Schrtdinger equation a 
term of the form 

the ~ ' s  being suitably chosen constant coefficients. We require the solu- 
tions of the hyperbolized equation to be always everywhere continuous 
together with their first derivatives, according to the usual quantum 
conditions. This decrees that the discontinuity waves associated with the 
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above equation never evolve into shocks, i.e. they are all exceptional in the 
sense of Lax (1954) and Boillat (1965). 

The function Fcan thus be determined and one obtains a linear equation 
according to the superposition principle. The coefficients of the resulting 
equation depend on the propagation velocity of the discontinuity waves, 
2, and when 2 = e, the velocity of light, the equation becomes covariant 
and coincides with the Klein-Gordon equation; when 2 ~ oo the equation 
has as a limit the Schrfdinger equation. A continuous connection between 
these two equations has thus been obtained. 

2. Hyperbolization of the Schr6dinger Equation 

Let us consider the differential equation 

h 2 a ( a ~ ) 2 i m c  2 /3~/\ m2c" 
-2--mVZ~O=ih~t +~t F .  + ~ F [ - ~ ) + - - - f f - F ( ~ h )  (2.1) 

where the function F(x) is chosen so that F(0) - 0 and equation (2.1) be 
a hyperbolization of the Schr6dinger equation (F = 0). 

We introduce the quantities 

0~' (2.2) 

in terms of which we obtain 

h 2 / 2m 2imc 2 m 2 c 4 
F(~) 

(2.3) 
0v= V~b 

We assume that $, q~ and v are everywhere continuous together with F(x) 
and its derivatives, whereas on the surface 

a(r,t) = 0  

the derivatives of v and ~b are not. Let us put (Donato & Ruggeri, 1972) 

Va O a l  ( ) ( ) , , 5 =  O 0 
n=~-~ -:" OtlVa I ~+- ~_ 

w h e r e  n is the unit normal to a, 2 is the normal propagation velocity of a 
and 6 indicates the jump of derivatives across a. 

The equation for the discontinuities can be written through the sub- 
stitution 

0 
-+ -26, V --> n6 
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which yields 

I n .  3v - ~ F'(~b) 26~b = 0 
Pm 

/ z -  (2.4) 
t - 2 &  = n~¢ 

Setting aside the case 2 = 0 (6~b = 0), we obtain from equation (2.4) 

and thus 
hZ 22 

2mF'(4~) 

Since equation (2.1) is assumed to be hyperbolic, 2 should be real and 
thus F'(d?) < 0. Furthermore we recall that a wave is said to be exceptional 
(Boillat, 1965) when 62 --- 0, i.e. in our case F"(4~) = 0. Therefore F'(dp) is 
constant together with 22, and, being F(0) = 0, 

h2 
F ( x ) -  2m22X (2.5) 

By substituting (2.5) into (2.1) we get the final equation 

h 2(V 2 1 02]0  ih(2 2 OO mc* 
2-ram\ - ~ ]  = 22 -- c2) Ot 222 ~b (2.6) 

When 2 --~ co equation (2.6) reduces to the Schr/Sdinger equation, whereas 
when 2 = c it becomes covariant and coincides with the Klein-Gordon 
equation. 

3. Relation between 2 and E(p)  

The role of 2 can be better understood by searching for solutions of (2.6) 
in the form of plane waves 

~p(x, t) = A exp [i(px - Et)/h] 

One obtains at once 

p(2mv - p) 2 z = m 2 c 4 -}- 2mc2pv - -  p 2 / ) 2  (3.1) 

where v = E/p is the vibration velocity. From (3.1) one has 

E 2 - 2me 2 E -  m 2 c ¢ 
22 = p2 _ 2mE (3.2) 

which relates 2 to the energy and momentum of the particle. 
This relation, of quantum origin, provides the correct dispersion relation 

E(p) in both the non-relativistic (2 ---> o~) and in the relativistic limit (2 = e). 
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Conversely,  i f  one assumes a given dispersion relation, obtains  f r o m  (3.2) 
a value o f  2 which, introduced into (2.6), yields a solution which may  be 
correct  within the correctness of  the dispersion relat ion one assumes. 
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